
Boundary Constrained Floorplanning Using

Sequence Pair

Student: Wisely Chen

Advisor: TingTing Hwang

Department of Computer Science

National Tsing Hua University

HsinChu, Taiwan 30043

Contents

1 Introduction 1

2 Previous Work 7

2.1 De�nition of Floorplanning : 7
2.2 Sequence Pair : 8

3 Proposed Approach 15

3.1 Boundary Constraints V.S. Sequence Pair : : : : : : : : : : : : : : : 15
3.2 Algorithm : 19

3.2.1 Range Reduction : 19
3.2.2 Proposed Algorithm : 20

3.3 Example : 23

4 Experimental Results 34

5 Conclusions 36

i

List of Figures

1.1 Floorplan Structures: (a) Slicing Structure and (b) Non-Slicing Structure 4
1.2 Modules with Input/Output Placed on the Boundary of the Chip : : 5
1.3 Modules Connect to Each Other Between Di�erent Groups by Hierar-

chical Floorplanning : 6

2.1 A Slicing Floorplan and Its Corresponding Polish Expression : : : : : 10
2.2 A Non-Slicing Floorplan and Its Corresponding BSG-table : : : : : : 11
2.3 A Non-Slicing Floorplan Maps to Sequence Pair: (a)Positive Sequence

and (b) Negative Sequence : 12
2.4 (a)Placement of Sequence Pair (abced , bdcae) and (b)Oblique-Grid

Notation of Sequence Pair (abced , bdcae) : : : : : : : : : : : : : : : : 13
2.5 (a)Horizontal Line (b) Vertical Line : : : : : : : : : : : : : : : : : : : 14

3.1 Legal Position for Modules with Top Boundary Constraint : : : : : : 26
3.2 Legal Position for Modules with Bottom Boundary Constraint : : : : 27
3.3 Legal Position for Modules with Left Boundary Constraint : : : : : : 28
3.4 Legal Position for Modules with Right Boundary Constraint : : : : : 29
3.5 Legal Position for Modules without Boundary Constraint : : : : : : : 30
3.6 Flowchart of Proposed Algorithm : 31

ii

List of Tables

3.1 Rules for Boundary Constrained Modules in Sequence Pair. : : : : : : 16
3.2 Range for Positive Sequence. : 20
3.3 Range for Negative Sequence. : 21
3.4 Position Range in Negative Sequence before Range Reduction(1 Means

Legal Position) : 25
3.5 Position Range in Negative Sequence after Range Reduction(2 Means

Removed by Range Reduction) : 32
3.6 Position Range in Negative Sequence after Selecting Module 3 in First

Position (3 Means SelectedModule and 4 Means Removed by Range Reduction) 33

4.1 Characteristic of Benchmarks : 34
4.2 Time and Area of Modules with Boundary Constraint and without

Boundary Cnstraint : 35
4.3 Area of Modules with Boundary Constraint and Modules with Pre-

placed Cnstraint : 35

iii

Abstract

In this thesis, we will study the boundary constrained oorplanning problem. A

oorplan can be classi�ed as slicing or non-slicing structure based on the placement

of modules. The oorplan based on non-slicing structure packs modules tighter than

oorplan based on slicing structure. Recently, some non-structure representations

were proposed. One of these representations is Sequence Pair. Sequence Pair is a

very compact representation and can represent all possible oorplan strucutres. In

oorplanning, if modules with input/output connections are placed at boundary of

the chip, it will save routing area and routing time. Besides, oorplanning is usually

done hierarchically in which modules are grouped into di�erent units. It will help

if some modules are packed along the boundary of the unit so that they can be put

in the neighboring. Therefore, we will focus on the boundary constrained modules

placement problem using Sequence Pair representation. First, we will �nd some rules

for Sequence Pair when boundary constraints are given. Based on these rules, we

propose a algorithm that will always search solution in legal solution space. In this

way, a lot of time is saved due to the pruning of search space. Our algorithm proceeds

in two phases: Pos and Neg. Pos permutes the positive sequence using Simulated

Annealing and Neg permutes the negative sequence exhaustively. At last, we will

show our experimental results.

iv

Chapter 1

Introduction

Floorplanning is an important step in physical design of very large scale integration

(VLSI) circuits. After the circuit partitioning phase, the area occupied by each block

(sub-circuit) can be calculated. In order to complete the layout, we need to arrange

the blocks on the layout surface. The arrangement of sub-circuits is done in the

oorplan phase [10]. In the oorplan phase, blocks are positioned on a layout surface,

while no two blocks are overlapping. The blocks are positioned so as to minimize the

total area of the layout. In other words, it packs all the functional modules in a chip

without violating design rules to minimize total area and interconnection cost.

A oorplan can be classi�ed as slicing or non-slicing structure based on the place-

ment of modules. Figure 1.1 shows two oorplanning representing slicing and non-

slicing structure. The slicing structure reduces the searching space and save time to

�nd solution. Liu and Wong proposed the Polish expression to represent the slicing

structure [6]. The Polish expression [6] is one of the e�cient slicing structure rep-

resentations. The non-slicing structure can pack the modules more tightly to save

area. Recently, the Sequence Pair (SP) [4, 9, 13] and the Bounded-Sliceline Grid

(BSG) [1, 2, 3] structures were proposed. The advantage of these two methods to the

conventional slicing structure [6, 7, 8, 11] is their universality: all placements could

be generated, either slicing or non-slicing placement.

1

In oorplanning, it is useful if IC designers are allowed to specify some placement

constraints in the �nal packing. Murata studied one type of placement constraints:

preplaced constraint. In this case, modules with preplaced constraint, like RAM,

ROM and central processing unit (CPU) core, are �xed in position, height and width,

and other modules are placed in the rest of the chip [5]. The second placement

constraint is boundary constraint. This is useful because IC designer may want to

place some modules with input/output connections on the boundary of the chip.

An example is shown in Figure 1.2 [10]. In this example, since modules 1, 5, 9, 11

are placed on the boundary, these modules have input/output connections on the

boundary of the chip, where module 9 and module 11 are placed at right boundary,

module 1 is placed at bottom boundary and module 5 is placed at left boundary. It

will save the routing area and save the complexity of router in routing step.

The second reason for boundary constrained oorplanner is that oorplanning is

usually done hierarchically in which modules are grouped into di�erent units. It will

help if some modules are packed along the boundary of the unit so that they can be

put in the neighboring at next level of hierarchy. Figure 1.3 shows an example where

module 9 in block D connects to module 8 in block C , and module 7 in block C

connects to module 2 in block E . We hope that module 9, 8, 7 and 2 will be placed

at the boundary of the block D , block C , block C and block E .

Therefore, we will focus on the boundary constrained modules placement problem

in this thesis. The modules will be placed using non-slicing structure since non-

slicing structure will produce more e�cient result in aspect of area than the slicing

structure. First, we will �nd some rules for Sequence Pair when boundary constraints

are given. Then, based on the de�ned legal sequence, our algorithm optimizes area

using simulated annealing.

The rest of this thesis is organized as follow. We review previous work on Sequence

2

Pair in Chapter 2. In Chapter 3, our algorithm is presented. Experimental results

will be presented in Chapter 4. Chapter 5 gives concluding remarks.

3

A

D

E F

G A

C

E

D

B

C

B

H

(a) (b)

Figure 1.1: Floorplan Structures: (a) Slicing Structure and (b) Non-Slicing Structure

4

1

2

3

8

7

6

5

4 9

10

11

12

Figure 1.2: Modules with Input/Output Placed on the Boundary of the Chip

5

2

10

4
9

8

11
12

1

7

63

5

A

D

C
E

B

3 6
8

7 12
11

15

4

BA D E

10

9

2

C

Figure 1.3: Modules Connect to Each Other Between Di�erent Groups by Hierarchical
Floorplanning

6

Chapter 2

Previous Work

2.1 De�nition of Floorplanning

Floorplanning is the placement of modules on a two-dimensional plane. The oor-

planning problem is de�ned as follows:

� Given:

{ an electrical circuit consisting of �xed blocks

{ a netlist interconnecting terminals on the periphery of these blocks

{ a netlist interconnecting terminals on the periphery of the circuit itself

� Find:

{ a layout indicating the positions of each block such that the layout area is

minimized

A oorplan can be classi�ed as slicing or non-slicing structures. A slicing oorplan

is a oorplan which can be obtained by recursively partitioning a rectangle into two

parts either by vertical cut or horizontal cut. A slicing structure is the rectangle

dissection structure. A slicing structure can be represented by a slicing tree. The

7

Polish expression is a typical method to represent slicing structure as shown in Figure

2.1. The label � and + are corresponding to vertical cut and horizontal cut.

A non-slicing oorplan is a oorplan that can NOT be obtained by recursive-

ly partitioning a rectangle into two parts either by vertical cut or horizontal cut.

According to this character, a non-slicing oorplanner places modules tighter than

slicing oorplanner. The Bounded-Sliceline Grid (BSG) structure was proposed to

represent the non-slicing structure. It represents the relative position of each module

by using the BSG-table. We can see an simple example in Figure 2.2; Figure 2.2 (a) is

a oorplan and Figure 2.2 (b) is its corresponding BSG-table. Disadvantage of BSG

structure is that it doesn't cover all possible placements. The Sequence Pair (SP)

was also proposed to represent non-slicing structures. It can represent all possible

placements. We will discuss in detail in next section.

2.2 Sequence Pair

A Sequence Pair for a set of n modules is a pair of sequences of the modules names.

The �rst sequence is called positive sequence and the second sequence is called neg-

ative sequence. For example, (abc , bac) is a Sequence Pair for module set (a, b, c)

where sequence (abc) is positive sequence and the sequence (bac) is negative sequence.

Given a placement, to derive positive sequence, we start drawing lines for each

modules from the left lower corner of the module. The lines will start to move down-

ward and change direction alternatively left and down until it reaches the left lower

corner of the chip without crossing. These lines are referred to by the corresponding

module names and that is positive sequence. Similarly, we can derive the negative

sequence by drawing lines that start from the right lower corner of each module and

change direction alternatively right and down until it reaches the right lower corner

of the chip without crossing. Figure 2.3 shows how to derive the Sequence Pair for a

8

placement. Figure 2.3 (a) and Figure 2.3 (b) show how positive and negative sequence

are derived.

A Sequence Pair imposes a horizontal/vertical constraint for every pair of modules

as follows:

� (...a...b... , ...a...b...) means a should be placed to the left of b

� (...b...a... , ...a...b...) means a should be placed below b.

For example, (abced , bdcae) means module a, module b and module c should be

placed to the left of module c and module a, module c and module e should be placed

above module d as shown in Figure 2.4 (a).

The horizontal/vertical constraints of a Sequence Pair can be drawn using the

oblique-grid notation. The oblique-grid notation of Sequence Pair (abced , bdcae) is

shown in Figure 2.4 (b). In oblique-grid notation, the nodes acrossed by the same

positions in both positive sequence and in negative sequence will form a horizontal

line as shown in Figure 2.5 (a). Similarly, the vertical line can be derived in the same

way as shown in Figure 2.5 (b). The only di�erence is that in negative sequence the

positions of horizontal line count up from 1 and the positions of vertical line count

down from the total number of modules.

9

H

G

D

FE

C

B

A

CB+A+EF*D+*HG+*

Figure 2.1: A Slicing Floorplan and Its Corresponding Polish Expression

10

A

B

C

D

A

B

C

D

(b)(a)

Figure 2.2: A Non-Slicing Floorplan and Its Corresponding BSG-table

11

D

C

A

B

E

A B C E D (a)

C

A

B

D

(b)

E

B D C A E

Figure 2.3: A Non-Slicing Floorplan Maps to Sequence Pair: (a)Positive Sequence
and (b) Negative Sequence

12

E
B

C

D

A

(a)

A

B

C

E

D
(b)

B

D

C

A

E

Figure 2.4: (a)Placement of Sequence Pair (abced , bdcae) and (b)Oblique-Grid No-
tation of Sequence Pair (abced , bdcae)

13

6

4

3

2

16
4

3

2

1

1

2
3

4

6

(a)

(b)

1

2

3

4

5

Figure 2.5: (a)Horizontal Line (b) Vertical Line

14

Chapter 3

Proposed Approach

3.1 Boundary Constraints V.S. Sequence Pair

In previous Chapter, we introduce the de�nition of Sequence Pair where a Sequence

Pair contains two parts: positive sequence and negative sequence. In this section,

we will �nd some placement rules in Sequence Pair for the boundary constrained

modules.

By de�nition of Sequence Pair, we know that if module A appears in front of

module B both in positive sequence and negative sequence, module A will be placed

left to module B. Therefore, module B will never be able to be placed at the left

boundary of the �nal result. Similarly, we can derive rules for modules with top,

bottom, left and right boundary constraints.

For top boundary constraint, modules which appear before the top boundary

constrained modules in positive sequence must also appear before the top boundary

constrained modules in negative sequence. For left boundary constraint, modules

which appear before the left boundary constrained modules in positive sequence must

appear after the left boundary constrained modules in negative sequence. For bottom

boundary constraint, modules which appear after the bottom boundary constrained

modules in positive sequence must also appear after the bottom boundary constrained

15

modules in negative sequence. For right boundary constrained, modules which appear

after the right boundary constrained modules in positive sequence must appear before

the right boundary constrained modules in negative sequence. The rules for each

type of boundary constrained modules are shown as Table 3.1. In Table 3.1, module

A denotes the module with boundary constraint and module B without boundary

constraint.

Table 3.1: Rules for Boundary Constrained Modules in Sequence Pair.

Boundary Constraint Legal permutation Illegal permutation

(:::a:::b:::; :::a:::b:::)
Top (:::a:::b:::; :::b:::a:::) (:::b:::a:::; :::a:::b:::)

(:::b:::a:::; :::b:::a:::)
(:::a:::b:::; :::a:::b:::)

Left (:::a:::b:::; :::b:::a:::) (:::b:::a:::; :::b:::a:::)
(:::b:::a:::; :::a:::b:::)
(:::a:::b:::; :::a:::b:::)

Bottom (:::a:::b:::; :::b:::a:::) (:::a:::b:::; :::b:::a:::)
(:::b:::a:::; :::b:::a:::)
(:::a:::b:::; :::b:::a:::)

Right (:::b:::a:::; :::a:::b:::) (:::a:::b:::; :::a:::b:::)
(:::b:::a:::; :::b:::a:::)

Let T, L, B and R denote the modules with top, left, bottom and right boundary

constraints, respectively and F means modules without any boundary constraint.

Among these four boundary constraints, there are some rules to be followed. They

are presented in the following two lemmas.

Lemma 3.1.1 In positive sequence, there are two rules to be followed.

� T modules must appear in front of R modules

� L modules must appear in front of B modules

16

< proof :> We prove the �rst rule. Assume the rule is wrong. It means T modules

appear behind R modules in the positive sequence. Then, there are two possible per-

mutations due to two permutations for the negative sequence: (...R...T... , ...R...T...)

and (...R...T... , ...T...R...).

� For permutation (...R...T... , ...R...T...), R will not be able to be placed at the

right boundary. This contradicts to our assumption.

� For permutation (...R...T... , ...T...R...), T will not be able to be placed at the

top boundary. This contradicts to our assumption.

No matter how the modules are placed in negative sequence, the result is illegal.

Therefore, the �rst rule is proven.

Similarly, we can prove the second rule. In the second rule, if L modules don't

appear in front of B modules in positive sequence, L modules or B modules will not

be able to be placed at the boundary where they should be placed.

Lemma 3.1.2 In negative sequence, there are two rules to be followed.

� L modules must appear in front of T modules

� B modules must appear in front of R modules

< proof :> We prove the �rst rule. Assume the rule is wrong. It means L modules

appear behind T modules in the negative sequence. There are two possible permuta-

tions due to the permutations of the positive sequence: (...L...T... , ...T...L...) and

(...T...L... , ...T...L...).

� For permutation (...L...T... , ...T...L...), T will not be able to be placed at the

top boundary. This contradicts to our assumption.

17

� For permutation (...T...L... , ...T...L...), L will not be able to be placed at the

left boundary constraint. This contradicts to our assumption.

No matter how the modules are placed in negative sequence, the result is illegal.

Therefore, the �rst rule is proven.

Similarly, we can prove the second rule. In the second rule, if B modules don't

appear in front of R modules in negative sequence, B modules or R modules will not

be able to be placed at the boundary where they should be placed.

Rules in Table 3.1, Lemma 3.1.1 and Lemma 3.1.2 only give relative positions of

modules when constraints are given. The following Lemma will specify the range of

the absolute positions for the constrained modules.

Lemma 3.1.3 Specify the range of the absolute positions for the constrained mod-

ules.

� T modules can not be placed below the horizontal line in oblique-grid notation.

� B modules can not be placed above the horizontal line in oblique-grid notation.

� R modules can not be placed left to the vertical line in oblique-grid notation.

� L modules can not be placed right to the vertical line in oblique-grid notation.

< proof :> We prove the �rst rule. Suppose one T module, Ta, is placed below

the horizontal line. Based on the de�nition of horizontal line, we know the number

of modules which appear before Ta module in positive sequence is larger than the

number of modules which appear before module in negative sequence. In other words,

there is at least one module that will appear before Ta module in positive sequence

and will appear after Ta module in negative sequence. That will cause T module

18

not to be placed at top boundary by Table 3.1. This contradicts to our assumption.

Therefore, the �rst rule is proven. Similarly, we can prove the other three rules.

For the above rules, we can compute the range of legal placement for boundary

constrained modules. Suppose there are NT number of T modules, NB number of B

modules, NL number of L modules, NR number of R modules and NF number of F

modules. The total number of modules is M. PT denotes last position of T modules

and PL denotes last position of L modules. We can derive the equation for the range

of the boundary constraint modules as showns in Table 3.2 and Table 3.3. In Table

3.3, i is the index of the position of the module in the positive sequence and Pi means

bound of range in negative sequence of the module that be placed at position i in

positive sequence. The legal positions of the constrained modules and free modules for

the placement of oblique-grid notation with 2 T modules, 3 L modules, 4 B modules,

5 L modules and 3 F modules are shown in Figure 3.1, Figure 3.2, Figure 3.3, Figure

3.4 and Figure 3.5. We show one example to illustrate how this formula is applied.

If T module is placed at �fth position in positive sequence, we can derive the range

of position of T module between 5 and 17. Since 5 is larger than NL (3), we use the

equation Pi = i to �nd lower bound and 5 is larger than NT , we use the equation

Pi = M to �nd upper bound.

3.2 Algorithm

3.2.1 Range Reduction

Table 3.2 and Table 3.3 give us the ranges of positions of modules in positive se-

quence and in negative sequence without taking relative positions of modules into

consideration. Taking relative position speci�ed by rules as presented in Table 3.1

into account, we can further reduce the range of positions of a module.

19

Table 3.2: Range for Positive Sequence.

Boundary Lower Upper

Constraint Bound Bound

Top 1 T � NR

Left 1 T � NB

Bottom PL + 1 M
Right PT + 1 M
Free 1 M

In Table 3.1, we know that given boundary constraints, some modules must ap-

pear after other modules in negative sequence. Based on these rules, we can reduce

the ranges of position of these modules that must appear after other modules. For ex-

ample, module a and module b are both L modules. According to Table 3.2 and Table

3.3, module a and module b should have the same range in negative sequence. How-

ever, if module a appears before module b in positive sequence, ie. (...a...b...,.........),

module a will not appear before module b in negative sequence. Otherwise, it will

violate the rule for left boundary constrained modules in Table 3.1. Hence, we can

reduce the range of module a. The new range of module a in negative sequence starts

at the position where module b is placed.

3.2.2 Proposed Algorithm

Our algorithm proceeds in two phases: Pos and Neg. Pos permutes the positive

sequence and Neg permutes the negative sequence.

The �rst step of Pos is to randomly pick up legal modules by Table 3.2 to be

placed at positions of positive sequence one by one. This selected positive sequence

will be a seed for Simulated Annealing.

Before introducing the moves for SA, we de�ne three sets which divide the posi-

20

Table 3.3: Range for Negative Sequence.

Boundary Lower Upper

Constraint Bound Bound

Top Pi = NL + 1 Pi = M �NT + i
for 1 <= i <= NL for 1 <= i <= NT

Pi = i Pi =M
for NL < i <=M � NR for NT <= i <= M � NR

Left Pi = NL + 1 � i Pi = M �NT

for 1 <= i <= NL for 1 <= i <= NT

Pi = 1 Pi = M + 1 � i
for NL <= i <= M � NB for NT < i <= M �NB

Bottom Pi = 1 Pi = i
for NL + 1 <= i <= M � NB for NL + 1 <= i <= M � NR

Pi = NB + i �M Pi =M � NR

for M � NB < i <= M for M � NR <= i <= M
Right Pi = M + 1 � i Pi =M

for NT + 1 <= i <=M � NB for NT + 1 <= i <= M � NR

Pi = NB + 1 Pi = 2M + 1 � i �NR

for M � NB <= i <= M for M � NR <= i <= M
Free Pi = T = NL + 2 � i Pi = M � NT � 1 + i

for 1 <= i <= NL + 1 for 1 <= i <= NT + 1
Pi = 1 Pi =M

for NL + 1 <= i <= M � NB for NT + 1 <= i <= M � NR

Pi = NB + 1 + i �M Pi = 2M � NR � i
for M � NB <= i <= M for M � NR <= i <= M

tions of positive sequence into three sets.

� The �rst set is the positions between the �rst position and the position where

the �rst modules with right/bottom boundary constraint can be placed.

� The second set are the positions that follow the �rst set and stops at the position

where the modules with bottom/right boundary constraint can be placed.

� The third set contains the rest of positions.

From Lemma 3.1.1, we know that T modules must appear in front of R modules

21

and L modules must appear in front of B modules. Therefore, we de�ne the �rst set

ends before the �rst right boundary constrained module or before the �rst module

with the bottom boundary constraint. Under this condition, only T, L and Fmodules

will appear in the �rst set. Similarly, the second set only contains either T, B and F

modules or L, R and F modules. The third set only contains B, R and F modules.

For example, (TjLlTkLmTnLoBpLqBrLsRtBuRv) is positive sequence. The �rst

set is from Tj to Lo: (TjLlTkLmTnLo) ; the second set is from Bp to Ls: (BpLqBrLs

) and the third set is from Rt to Rv: (RtBuRv).

According to the properties of three sets, we de�ne three moves for SA.

� change the modules with the same boundary constraint

� change the modules in the same set

� { If the last module in the �rst set is L module and the �rst module in the

second set is R module, change them.

{ If the last module in the �rst set is T module and the �rst module in the

second set is B module, change them.

{ If the last module in the second set is R module or T module and the �rst

module in the third set is B module, change them.

{ If the last module in the second set is L module or B module and the �rst

module in the third set is R module, change them.

For the �rst type of move, the modules with the same boundary constraint are

allowed to be moved within these module positions. For the second type of move,

we can derive all possible permutations in each sets. This move can produce a local

optimal solution. For the third type of move, we change the length of three sets. This

move can jump away from local optimal permutation. Hence, we can derive the legal

global and optimal permutation.

22

After deciding the positive sequence from Pos phase, we can derive the legal

placing range in negative sequence for each modules using Table 3.3. According

to the information, we can construct a legal solution table, where the �rst column

is the positive sequence produced by procedure Pos and the �rst row is the module

names. Columns from second column to last column indicate the positions of negative

sequence. The elements of legal solution table will be set to 0 or 1. When an element is

set to 0, it means that the corresponding module can not be placed at that position in

negative sequence. Otherwise, the module can be placed at the position. In procedure

Neg, we will search the best solution exhaustively under the selected positive sequence

using these table. The owchart of proposed algorithm is shown in Figure 3.6.

The objective of our algorithm is to minimize the total area of the chip under the

boundary constraints. The are is computed as

Area = W �H (3:1)

where W denotes the maximum width of the oorplanning result and H denotes the

maximum height of the oorplanning result.

3.3 Example

We illustrate our algorithm using an example. Suppose there are 17 modules, named

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 and 17. 1 and 2 are T modules; 3, 4 and 5 are L

modules; 6, 7, 8 and 9 are B modules; 10, 11, 12, 13 and 14 are R modules; 15, 16 and

17 are F modules. The legal position ranges are shown in Figure 3.1 for T modules,

Figure 3.3 for L modules, Figure 3.2 for B modules, Figure 3.4 for R modules and

Figurer 3.5 for F modules. From Table 3.2 we can calculate a legal positive sequence

range for all modules.

23

At the �rst position of positive sequence, we know that modules 1, 2, 3, 4, 5, 15,

16 and 17 are acceptable modules to be placed at the position. We randomly choose

one module from these modules. Let module 4 be chosen. In the same way, we can

choose modules 1, 15, 5 and 3.

After choosing module 3, L modules are all already placed in positive sequence.

B modules begin to be candidates. At the sixth position of positive sequence, we

know that modules 2, 6, 7, 8, 9, 16 and 17 are acceptable modules to be placed at the

position. Repeating the above selection step, we can produce a positive sequence.

Assume that the positive sequence seed produced is (4 1 15 5 3 6 2 14 17 9

10 11 12 8 16 13 7). With this selected positive sequence, the initial negative

sequence position range using Table 3.3 is shown in Table 3.4. The range of positions

in negative sequence are all set to 1 in Table 3.4. However, there are some illegal

positions in the initial negative sequence caused by the selected positive sequence.

We will run the range reduction to remove the illegal position. In Table 3.5, the

removed positions are represented by 2. In the �rst run, module 3 will be placed in

the �rst position in negative sequence, represented by number 3 in the Table 3.6. We

will run the range reduction to remove the illegal positions caused by selecting module

3, represented by number 4 in the Table 3.6. The range reduction step repeats until

all modules are placed. After the range reduction step, we will search all possible

legal permutations in negative sequence and select the best result.

24

Table 3.4: Position Range in Negative Sequence before Range Reduction(1 Means
Legal Position)

Module

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

4 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
3 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
6 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
14 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
11 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
12 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
16 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
13 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0
7 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0

25

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17 1
2

3
4

5

6
7

8
9

10
11

12
13

16
17

15
14

Figure 3.1: Legal Position for Modules with Top Boundary Constraint

26

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17 1
2

3
4

5

6
7

8
9

10
11

12
13

16
17

15
14

Figure 3.2: Legal Position for Modules with Bottom Boundary Constraint

27

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17 1
2

3
4

5

6
7

8
9

10
11

12
13

16
17

15
14

Figure 3.3: Legal Position for Modules with Left Boundary Constraint

28

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17 1
2

3
4

5

6
7

8
9

10
11

12
13

16
17

15
14

Figure 3.4: Legal Position for Modules with Right Boundary Constraint

29

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17 1
2

3
4

5

6
7

8
9

10
11

12
13

16
17

15
14

Figure 3.5: Legal Position for Modules without Boundary Constraint

30

Construct the

Legal Solution Table

Begin

i=1

Randomly Select
One of Legal Modules
to Place at ith Position
in Positive Sequence

i=NumberOfModule?

No

i++

j=1

Randomly Select

j=NumberOfMoves?

j++

Pos phase

Yes

No

Yes

i=1

Yes

End

Neg phase

One of Three Moves

Range_Reduction

Select One Legal Module

to Place the ith Position

in Negative Sequence

i=NumberOfModule?

No

i++

No Achieve

Ending Temperature?

Yes

Figure 3.6: Flowchart of Proposed Algorithm

31

Table 3.5: Position Range in Negative Sequence after Range Reduction(2 Means
Removed by Range Reduction)

Module

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

4 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2
15 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2
5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
3 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
6 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
14 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
17 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
9 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2
11 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2
12 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2
8 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
16 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
13 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0
7 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0

32

Table 3.6: Position Range in Negative Sequence after Selecting Module 3 in First
Position (3 Means Selected Module and 4 Means Removed by Range Reduction)

Module

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

4 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
15 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
3 3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
6 4 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
14 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
17 0 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
9 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0
11 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0
12 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0
8 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
16 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
13 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0
7 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0

33

Chapter 4

Experimental Results

The proposed algorithm has been implemented in C language. To test our algorithm,

benchmark examples are selected from MCNC. Table 4.1 summarize the characteris-

tics of each circuits. We pick up 9 modules from ami33, 10 modules from ami49, 4

modules from hp, 5 modules from apte and 5 modules from xerox, and require them

to be packed along the boundaries evenly as boundary constraints.

Table 4.1: Characteristic of Benchmarks

Benchmark Total Area Number of Modules

Ami33 1168349 33
Ami49 22628920 49
Xerox 19350296 10
Hp 8810760 11
Apte 4651628 9

The starting temperature is 1000K. The temperature is lowered at a constant rate

(0.9). All the experimentals were carried out on a 266-MHz Pentium Intel processor.

In our experiments, we compare the modules under two conditions: modules with

boundary constraints and modules without boundary constraints. The algorithm of

modules without boundary constraints is implemented in dual Simulated Annealing

34

for positive sequence and negative sequence [4]. In Table 4.2, we show the area

utilization. Our result wastes no more than 6% dead space when the boundary

constraints are given.

In Table 4.3, we compare two types of placement constraints: preplaced constrain-

t and boundary constraint. In this experiment, we �rst run our program to get the

positions of constrained modules. Then we assign these constrained modules as pre-

placed modules with �x position in chip and run tool presented in [5]. This Table

shows that our algorithm can produce much better results than [5].

Table 4.2: Time and Area of Modules with Boundary Constraint and without Bound-
ary Cnstraint

Bench Total Area with Area in Time in

Area Dual SA Our Algorithm Our Algorithm

Ami33 1168349(1) 1285515(1.10) 1350048(1.16) 238032
Ami49 22628920(1) 35581225(1.06) 36537136(1.12) 1023852
Xerox 19350296(1) 20509889(1.06) 37537136(1.09) 2361
Hp 8810760(1) 8926841(1.01) 9419592(1.07) 4473
Apte 4651628(1) 47553329(1.02) 48097872(1.03) 3421

Table 4.3: Area of Modules with Boundary Constraint and Modules with Preplaced
Cnstraint

Bench Total Area with Area with

Area Preplaced Constraint Boundary Constraint

Ami33 1168349(1) 1609748(1.37) 1350048(1.16)
Ami49 22628920(1) 49670164(2.1) 36537136(1.12)

35

Chapter 5

Conclusions

In this thesis, will have studied the boundary constrained oorplanning problem. In

oorplanning, it is userful if IC designers are allowed to specify some placement con-

straints in the �nal packing. In this thesis, we have presented a non-slicing structure

oorplanning algorithm,which takes boundary constraint into account. Based on Se-

quence Pair, we have showed some rules when boundary constraints are given. These

rules help us avoid to �nd illegal permutations in positive sequence and in negative

sequence so that we can always �nd solution from legal solution space when using

Sequence Pair.

36

Bibliography

[1] S.Nakatake, K.Fujiyoshi, H.Murata, and Y, Kajitani, "Module Placement on

BSG-Structure and IC Layout Applications," in Proc. of ICCAD, 1996, pp. 484-

491.

[2] Jianbang Lai and Ting-Chi Wang, "Module Placement with Boundary Con-

straint Based on BSG-Structure," in Proc. of Taiwan, 1998, pp. 43-47.

[3] S. Nakatake, M. Furuya and Y. Kajitani, "Module Placement on BSG-Structure

with Pre-Placed Modules and Rectilinear Modules,"

[4] H. Murata, K. Fujiyoshi, S. Nakatake and Y. Kajitani, "Rectangle-Packing-Based

Module Placement," in Proc. of ICCAD, 1995, pp. 472-479.

[5] H. Murata, K, Fujiyoshi and M. Kaneko, "VLSI/PCB Placement with Obstacles

Based on Sequence-Pair," in Proc. of ISPD, 1997, pp. 26-31.

[6] D. F Wong and C. L. Liu, "A New Algorithm for Floorplan Design," in Proc. of

DAC, 1986, pp. 101-107.

[7] F. Y. Young and D. F. Wong, "Slicing Floorplans with Boundary Constraint,"

in Proc. of ASP-DAC, 1997, pp265-270.

[8] F. Y. Young and D. F. Wong, "Slicing oorplans with preplaced modules," in

Proc.IEEE Int. Conf. Computer-Aided Design, 1998, pp. 252-258

[9] H. Murata and E. S. Kuh, "Sequence Pair Based Placement Method for

Hard/Soft/Pre-Placed Modules", in Proc. of ISPD, 1998, pp. 167-172.

[10] N. Sherwani, "Algorithms for VLSI physical design automation," Kluwer Aca-

demic Publishers, 1996.

[11] D. P. Lapotin and S. W. Director, "A new algorithm for oorplan design." Pro-

ceedings IEEE International Conference on Computer-Aided Design, page 143-

145, 1985.

[12] F. Y. Young and D. F. Wong, "How good are slicing oorplans." Integration,

the VLSI journal, 23:61-73, 1997.

37

[13] Jin Xu, Pei-Ning Guo and Ghung-Kuan Cheng, "Sequence-Pair Approach for

Rectilinear Module Placement." IEEE Transactions on Computer-Aided Design,

page 484-493, 1999.

[14] Teng-Sheng Moh, Tsu-Shuan Chang and S. Louis Hakimi, "Globally Optimal

Floorplanning for a Layout Problem." IEEE Transactions on Circuits and Sys-

tem, page 713-720, 1996.

38

